Contribution from the Department of Chemistry, Faculty of Science, The University of Tokyo, Hongo, Tokyo, Japan

Molecular Structure of Phosphorus Trifluoride Studied by Gas Electron Diffraction

BY YONEZO MORINO, KOZO KUCHITSU, AND TOHEI MORITANI

Received September 9, 1968

The interatomic distances and the mean amplitudes for PF₃ have been determined by the sector-microphotometer method of gas electron diffraction to be $r_g(P-F) = 1.5700 \pm 0.0012$ Å, $r_g(F \cdots F) = 2.3643 \pm 0.0028$ Å, $l(P-F) = 0.0395 \pm 0.0025$ Å, and $l(F \cdots F) = 0.0653 \pm 0.0029$ Å. The average structure in the ground vibrational state has been calculated from the interatomic distances (r_g) by making correction for the effect of atomic displacements perpendicular to the equilibrium bond directions and for the centrifugal distortion. This average structure is in good correspondence with the rotational constant B_z calculated from the rotational constant B_0 obtained by microwave spectroscopy. The bond angle for PF₃, $\theta_{\alpha}(F-P-F) = 97.8 \pm 0.2^{\circ}$, is found to be the smallest in the series of phosphorus trihalides reported so far, and, hence, one of the subrules proposed by Gillespie has to be modified.

Introduction

There have been appreciable differences among the structures of phosphorus trifluoride given in the literature. The structure was first reported to be r(P-F) = 1.52 Å and $\theta(F-P-F) = 104^{\circ}$ by Brockway and his coworkers,^{1,2} who used the visual method of electron diffraction, while the angle was later claimed to be much smaller $(r(P-F) = 1.537 \pm 0.04$ Å and $\theta(F-P-F) = 98.2 \pm 0.6^{\circ})$ according to the sector study of Hersh.³ Neither structure, however, was consistent with the rotational constant B_0 obtained by microwave spectroscopy.^{4,5}

On the other hand, it has been difficult to determine the parameters directly by spectroscopic data alone, because both phosphorus and fluorine have single stable isotopes. Accordingly, the FPF angle had to be assumed in order to derive the P-F distance from the B_0 constant obtained by Gilliam, Edwards, and Gordy.⁵ The FPF angles of 104, 102, 100, and 98° led to the P-F distances of 1.546, 1.551, 1.56, and 1.562 Å, respectively.⁵⁻⁸ (Mirri, et al.,⁴ pointed out that the P-F distance of 1.535 Å, given by Williams, et al.,⁷ from the assumed FPF angle of 100°, was incorrect.)

In terms of the indirect evaluation of molecular geometry, Mirri⁸ estimated the bond angle from the Coriolis coupling constant ζ_4 and the force constants using Meal and Polo's relation.⁹ The upper limit for the estimated bond angle (98°) was smaller than that assumed in earlier studies^{4,6,10} (102°); it was not only in agreement with Hersh's diffraction value³ but also indicative of a force field, which brought the Coriolis

- (6) P. Kisliuk, J. Chem. Phys., 22, 86 (1954).
- (7) Q. Williams, J. Sheridan, and W. Gordy, *ibid.*, 20, 164 (1952).

coupling constants and the centrifugal distortion constants into good consistency.

Various structures reported so far are summarized in Figure 1. As has been discussed extensively by Gillespie,¹¹⁻¹³ Bartell,^{14,15} and others, the structure of PF_3 is of basic importance in the stereochemistry of inorganic molecules. Accordingly, the present study has been undertaken to determine a more accurate structure by gas electron diffraction.

Experimental Section

A sample of PF_3 was prepared by the method cited by Brauer:¹⁶ $PCl_3 + 3HF \rightarrow PF_3 + 3HCl$. The reaction vessels were made of brass. The system was filled with nitrogen gas and the product gas was sprayed on ice-cold water, into which hydrogen chloride was absorbed. The crude product trapped by liquid nitrogen contained a small amount of hydrogen chloride and silicon tetrafluoride. They were removed by another spray onto ice-cold water, which, however, caused considerable decomposition of PF_3 . Upon redistillation under vacuum, no impurity band was observed in the infrared spectrum.

Electron diffraction photographs were taken with an apparatus 17,18 equipped with an r^3 sector at the camera lengths of 10.778 \pm 0.002 and 24.322 \pm 0.002 cm. The electron wavelength, 0.05969 Å, was calibrated with reference to the $r_{\rm a}(C=0)$ bond distance (1.1646 Å) of carbon dioxide measured under the same experimental condition. The gas stored in a 2-l. flask with a pressure of about 90 Torr at 22° was led into the diffraction chamber through a nozzle 0.2 mm in diameter. The pressure in the apparatus was less than 1×10^{-4} Torr during photographic exposure. Photographs were recorded on Fuji Process Hard plates with exposure times of about 30 sec and were developed at 20° for 5 min with ED-131 developer diluted twice.

(15) L. S. Bartell and K. W. Hansen, ibid., 4, 1777 (1965).

⁽¹⁾ L. O. Brockway and F. T. Wall, J. Am. Chem. Soc., 56, 2373 (1934).

⁽²⁾ L. Pauling and L. O. Brockway, ibid., 57, 2684 (1935).

⁽³⁾ O. L. Hersh, University Microfilms, Ann Arbor, Mich., Order No. 64-827; Dissertation Abstr., 24, 2286 (1963).

⁽⁴⁾ A. M. Mirri, F. Scappini, and P. G. Favero, Spectrochim. Acta, 21, 965 (1965).

⁽⁵⁾ O. R. Gilliam, H. D. Edwards, and W. Gordy, Phys. Rev., 75, 1014 (1949).

⁽⁸⁾ A. M. Mirri, *ibid.*, 47, 2823 (1967).
(9) J. H. Meal and S. R. Polo, *ibid.*, 24, 1126 (1956).

⁽¹⁰⁾ I. W. Levin and S. Abramowitz, ibid., 44, 2562 (1966).

⁽¹¹⁾ R. J. Gillespie, J. Chem. Educ., 40, 295 (1963).

⁽¹²⁾ R. J. Gillespie, Angew. Chem., 79, 885 (1967); Angew. Chem. Intern. Ed. Engl., 6, 819 (1967).

⁽¹³⁾ R. J. Gillespie, J. Am. Chem. Soc., 82, 5978 (1960).

⁽¹⁴⁾ K. W. Hansen and L. S. Bartell, Inorg. Chem., 4, 1775 (1965).

⁽¹⁶⁾ G. Brauer, "Handbuch der präparativen anorganischen Chemie," Vol. I, Ferdinand Enke Verlag, Stuttgart, 1960, p 182; "Handbook of Preparative Inorganic Chemistry," Vol. I, 2nd ed; Academic Press, New York and London, 1963, p 189.

⁽¹⁷⁾ K. Kuchitsu and S. Konaka, J. Chem. Phys., 45, 4342 (1966).

⁽¹⁸⁾ Y. Murata, K. Kuchitsu, M. Kimura, and Y. Morino, to be submitted for publication.

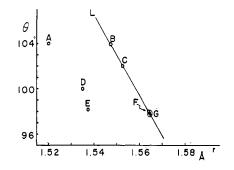


Figure 1.—Structural parameters for PF₃ (r for the P–F distance and θ for the F–P–F angle): (A) Pauling, et al., ED;² (B) Gilliam, et al., MW;⁵ (C) Kisliuk, MW;⁶ (D) Williams, et al., MW;⁷ (E) Hersh, ED;³ (F) Mirri, MW;⁸ (G) present study, ED (ED, electron diffraction; MW, microwave spectroscopy). A relation set by the rotational constant⁴ B_z is shown by the line L.

Optical densities were measured by means of a microphotometer and an integrating digital voltmeter across the diameter of the plate with a regular interval of $\Delta q = 1.1^{10}$ The optical densities (0.18–0.57) were assumed to be proportional to the electron intensities. Intensity data taken from four shortdistance plates and two long-distance plates were analyzed by a standard least-squares method with a diagonal weight matrix²⁰ for the q values 15–120 using the elastic and inelastic scattering factors taken from the recent literature.^{21–23} The observed and the best-fit molecular intensities are shown in Figure 2, and the corresponding error matrix is given in Table I.²⁴

TABLE I

Error Matrix^a

	$r(\dot{\mathbf{P}}-\mathbf{F})$	$r(\mathbf{F} \cdot \cdot \cdot \mathbf{F})$	l(P-F)	$l(\mathbf{F}\cdots\mathbf{F})$	k
r(P-F)	0.0004	0.0000	-0.0000	0.0001	0.0001
$r(\mathbf{F}\cdots\mathbf{F})$		0.0017	0.0001	-0.0001	0.0004
l(P-F)			0.0007	0.0004	0.0022
$l(\mathbf{F}\cdots\mathbf{F})$				0.0015	0.0021
k					0.0093

^a Units for the distance r_a and the mean amplitude are Å, while the index of resolution k (average 0.84) is dimensionless. Elements of the matrix are given by $\sigma_{ii} = \text{sgn}\left[(B^{-1})_{ii}\right] \left[|(B^{-1})_{ij}| \cdot V^*PV/(n-m)\right]^{1/2}$, where the notations correspond to those by O. Bastiansen, L. Hedberg, and K. Hedberg, J. Chem. Phys., **27**, 1311 (1957). The diagonal element σ_{ii} represents the random standard error for the parameter *i*.

The r_{\pm} distances of P-F and F \cdots F and their mean amplitudes derived from this analysis are listed in Table II. The limits of uncertainty (2.5 σ) were estimated from the internal consistency and the reproducibility of the results including the consideration of systematic errors, among which the error in the scale factor was the only significant one for the distance parameters, while for the mean amplitudes those due to extraneous scattering and the correlation with the index of resolution were the most important

(21) T. G. Strand and R. A. Bonham, J. Chem. Phys., 40, 1686 (1964).

TABLE II

Structural Parameters and Mean Amplitudes from Electron Diffraction^a

	P-F, Å	$\mathbf{F}\cdots\mathbf{F}$, Å	θ (F–P–F), deg
ra	1.5689 ± 0.0012	2.3624 ± 0.0028	(97.7)
r _g	1.5700 ± 0.0012	2.3643 ± 0.0028	(97.8)
r_{α}	1.5644 ± 0.0012	2.3578 ± 0.0028	97.8 ± 0.2
r_{α}^{0}	1.5647 ± 0.0012	2.358 ± 0.006^{b}	97.8 ^b
$l_{ m obsd}$	0.0395 ± 0.0025	$0.0653\ \pm\ 0.0029$	
l_{ealed}	0.0412	0.0698	

^a See ref 17 for various definitions of the structure of a molecule exerting vibration and rotation. Convenient measures of structure may be "the thermal-average values of interatomic distances," $r_{\rm g}$, and "the angles measured with regard to the average positions of atoms," θ_{α} and θ_{α}^{0} for thermal and zero-point averages, respectively. ^b Estimated; see text.

contributors. The errors in the asymmetry parameters κ ($\kappa_{\rm P-F}$ and $\kappa_{\rm F-F}$ assumed to be 7×10^{-7} Å³ and zero, respectively) were insignificant.

The thermal averages of the instantaneous internuclear distances $r_{\rm g}$ were calculated by²⁵

$$r_{\rm g} = r_{\rm a} + (l^2/r_{\rm a}) \tag{1}$$

The mean amplitudes are compared in Table II with those calculated from the quadratic force constants which were determined by Mirri⁸ from vibrational frequencies, centrifugal distortion, and Coriolis coupling constants. The agreement is within the errors in the experimental and theoretical values, the latter being estimated to be about ± 0.003 Å. Similar values for the amplitudes have been calculated by several authors.²⁶⁻²⁸

Molecular Structure

Average Structure (r_{α}^{0}) from Electron Diffraction.— In order to compare the structure determined in the present analysis with spectroscopic results, the zeropoint average distances²⁹ (r_{α}^{0}) were derived from r_{g} by the use of the quadratic force constants. Following the usual steps, the r_{α} and r_{α}^{0} distances were calculated by¹⁷

$$r_{\alpha} = r_{g} - \left[\left(\langle \Delta x^{2} \rangle + \langle \Delta y^{2} \rangle \right) / 2r \right] - \delta r$$
 (2)

$$r_{\alpha}^{0}(P-F) = \lim_{T \to 0^{\circ}K} r_{\alpha}(P-F) = r_{\alpha}(P-F) - \Delta \langle \Delta z \rangle$$
(3)

where

$$\begin{aligned} \Delta \langle \Delta z \rangle &\equiv \Delta z \text{ (room temperature)} - \langle \Delta z \rangle (0^{\circ} \text{K}) \\ &= {}^{3}/_{2} a \Delta \langle \Delta z^{2} \rangle - [\Delta (\langle \Delta x^{2} \rangle + \langle \Delta y^{2} \rangle)/2r] \end{aligned} \tag{4}$$

The parameter *a* characterizing the anharmonicity of the P–F bond stretching vibration was assumed to be equal to that of the PF diatomic molecule,⁸⁰ 1.89 Å⁻¹. Minor corrections for the centrifugal distortion, δr ,

(25) L. S. Bartell, J. Chem. Phys., 23, 1219 (1955); K. Kuchitsu and L. S. Bartell, *ibid.*, 35, 1945 (1961).

- (26) J. Bakken, Acta Chem. Scand., 12, 594 (1958).
- (27) G. Nagarajan, Indian J. Pure Appl. Phys., 2, 237 (1964) (as cited in ref 28).
- (28) S. J. Cyvin, "Molecular Vibrations and Mean Square Amplitudes," Universitetsiorlaget, Oslo, and Elsevier Publishing Co., Amsterdam, 1968, pp 215-216.
- (29) Y. Morino, K. Kuchitsu, and T. Oka, J. Chem. Phys., 36, 1108 (1962).
 (30) A. E. Douglas and M. Frackowiak, Can. J. Phys., 40, 832 (1962);
- (30) A. L. Douglas and M. Hackowiak, can. 5. 1 Mgs., 40, 552 (100 K. Kuchitsu and Y. Morino, Bull Chem. Soc. Japan, 38, 805 (1965).

⁽¹⁹⁾ Y. Morino, K. Kuchitsu, and T. Fukuyama, Bull. Chem. Soc. Japan, 40, 423 (1967).

⁽²⁰⁾ Y. Morino, K. Kuchitsu, and Y. Murata, Acta Cryst., 18, 549 (1965).

⁽²²⁾ R. A. Bonbam and T. Ukaji, ibid., 36, 72 (1962).

⁽²³⁾ C. Tavard, D. Nicolas, and M. Rouault, J. Chim. Phys., 64, 540 (1967). (24) Numerical data have been deposited as Document No. NAPS-00216 with the ASIS National Auxiliary Publications Service, c/o CCM Information Sciences, Inc., 22 West 34th St., New York, N. Y. 10001. A copy may be secured by citing the document number and by remitting \$3.00 for photocopies or \$1.00 for microfiche. Advance payment is required. Make checks or money orders payable to: ASIS-NAPS.

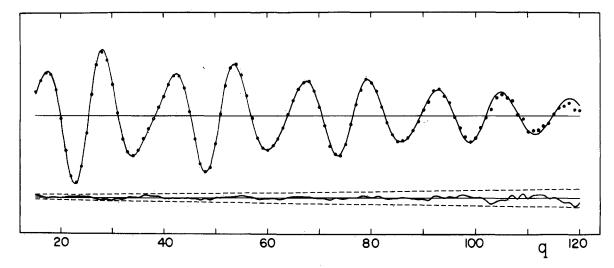


Figure 2.—Reduced molecular intensity qM(q) for PF₃. The observed and the best-fit values from one of the photographic plates are shown by dots and a solid curve, respectively. The lower solid and broken curves represent the residual and the error in the qM(q)due to the relative error of 1×10^{-3} in the original photocurrent, respectively.

were calculated by the method of Iwasaki and Hedberg³¹ to be 4×10^{-4} Å for P-F and F \cdots F.

The zero-point average angle, θ_{α}^{0} , was set equal to the temperature-average angle, θ_{α} , for the following reason. It seems plausible, as a first-order approximation, to assume a linear and additive relation in regard to the angle corresponding to the average positions of atoms for a certain vibrational state $v(v_1, v_2, v_3, v_4)$, designated as

$$\theta_{z^{v}} = \theta_{e} + \sum_{i=1}^{n} \beta_{i}(v_{i} + d_{i}/2) + \dots$$
 (5)

where d_i represents degeneracy. Since the θ_{α} angle is essentially equal to the Boltzmann average of θ_z^{v} , it follows that

$$\theta_{\alpha} \approx \sum_{v} \theta_{z}^{v} w_{v}(T) \approx \theta_{e} + \sum_{i} \beta_{i} d_{i} T_{i}/2$$
 (6)

where

$$w_v(T) = \exp(-E_{\rm vib}(v)/kT) / \sum_v \exp(-E_{\rm vib}/kT)$$
(7)

and

$$T_i = \coth\left(hc\nu_i/2kT\right) \tag{8}$$

Accordingly, the difference is shown to be

$$\theta_{\alpha} - \theta_{\alpha}^{0} \approx \sum_{i} \beta_{i} d_{i} (T_{i} - 1)/2$$
(9)

One may further assume that substantial contributions come from bending modes ν_2 (487 cm⁻¹) and ν_4 (344 cm⁻¹)³² and that the orders of magnitude of β_2 and β_4 are equal. Then the difference may be estimated in terms of that between the zero-point average and equilibrium angles.

$$\theta_{\alpha} - \theta_{\alpha}^{0} \approx 0.37 (\theta_{z} - \theta_{e})$$
(10)

While the $\theta_z - \theta_e$ for PF₃ is unknown, it can be esti-

mated from analogous molecules to be only a small fraction of 1°. (For example, the corresponding differences are +6' and +2' for OF₂ and SO₂, respectively.³³) Consequently, it seems plausible to regard the θ_{α}^{0} as equal to θ_{α} to within the experimental uncertainty of the latter (±0.2°). The $r_{\alpha}^{0}(F \cdots F)$ distance was derived from the $r_{\alpha}^{0}(P-F)$ distance and the θ_{α}^{0} angle.

Various average distances and angles are listed in Table II.

Rotational Constant from Spectroscopy.—The rotational constant B_z , which corresponds to the average structure in the ground vibrational state, was calculated from the rotational constant for the ground vibrational state B_0 by correcting for rotation-vibration interactions.¹⁷ The difference between B_z and B_0 was found to be -5.70×10^{-3} cm⁻¹. Thus the rotational constant B_0 (7819.99 MHz) obtained by Mirri, *et al.*,⁴ gave a B_z constant of 7802.9 MHz.

Average Structure.—The rotational constant B_z sets a relation between the $r_z(P-F)$ distance and the $\theta_z(F-P-F)$ angle. This is illustrated in Figure 1 as a nearly straight line L. No unique r_z structure can be obtained from spectroscopy alone since the other rotational constant C_z is yet unknown.

On the other hand, the r_{α}^{0} structure, which should be essentially equivalent to the spectroscopic r_{z} structure,¹⁷ derived from electron diffraction is shown by G with an estimated uncertainty indicated by an ellipse. Since the point G is very closely on the line L, the result of electron diffraction is consistent with the rotational constant B_{z} . This consistency may be restated from a slightly different standpoint. The θ_{z} angle can be obtained from B_{z} based on spectroscopy and the $r_{\alpha}^{0}(P-F)$ distance based on electron diffraction. The resulting θ_{z} , 97.9 $\pm 0.3^{\circ}$, agrees with θ_{α} , 97.8 $\pm 0.2^{\circ}$, within experimental uncertainties, and, hence, the above-mentioned

⁽³¹⁾ M. Iwasaki and K. Hedberg, J. Chem. Phys., 36, 2961 (1962).

⁽³²⁾ M. K. Wilson and S. R. Polo, *ibid.*, **20**, 1716 (1952); H. S. Gutowsky and A. D. Liehr, *ibid.*, **20**, 1652 (1952).

 ⁽³³⁾ Y. Morino and S. Saito, J. Mol. Spectry., 19, 435 (1966); Y. Morino,
 Y. Kikuchi, S. Saito, and E. Hirota, *ibid.*, 13, 95 (1964).

estimation, $\theta_{\alpha}^{0} \approx \theta_{\alpha}$, within a few tenths of 1°, is justified.

Discussion

In the light of the structural parameters determined in the present investigation, the long-standing confusion in regard to the PF₃ structure may be elucidated in the following way.

(a) The initial study of Brockway and Wall¹ by means of visual intensity measurements (r(P-F) =1.65 Å and $\theta(F-P-F) = 99^{\circ})$ estimated the structure nearly correctly. However, a subsequent study of Pauling and Brockway² by the radial distribution method gave a different set of parameters including much larger errors (r = 1.47 Å and $\theta = 110^{\circ})$. Unfortunately, the latter authors recommended average values of the above two with equal weights (r = 1.52 Å and $\theta = 104^{\circ})$. Similar situations are encountered in the structures of PCl₈, AsCl₃, and Cl₂O.

(b) Hersh's study,⁸ on the other hand, estimated the bond angle correctly, whereas an appreciable systematic error (about 2%) involved in the scale factor caused the bond distance to appear unreasonably short. This is probably the reason for a similar systematic shortening in the P–F bond distances of PF₅ studied contemporaneously by Hersh in comparison with the corresponding distances reported more recently by Hansen and Bartell.¹⁴

(c) The P-F distance of 1.535 Å, which was presented by Williams, et al.⁷ as derived from the rotational constant B_0 by assuming the bond angle of 100° and which has frequently been referred to,³⁴ is in fact incompatible with the rotational constant, as first pointed out by Mirri.⁴ This value was compared by Hansen and Bartell¹⁴ with the axial and equatorial P-F distances in PF₅, where the latter bond (1.534 Å)was thought to be "surprisingly close to the P-F bond in PF_3 ." It turns out, however, that a more correct P-F bond distance in PF_3 (1.570 Å) is apparently much closer to the axial P-F distance (1.577 Å). The P-F bond of PF₃BH₃ measured by Kuczkowski and Lide³⁵ is shorter than that of PF_3 by about 0.03 Å, while the P-F bond in $HPF_{2^{36}}$ is longer by 0.01 Å. The latter increase has been discussed by Kuczkowski,36 although he cited Hersh's value for the P-F bond in PF₃.

The above differences in the P–F bond distances for related molecules (Figure 3) may be understood systematically in terms of the structural characteristics of PF₅, CH₃PF₄, and (CH₃)₂PF₃, as discussed by Bartell and Hansen¹⁵ and by Gillespie.^{12,37} The P–F bond distance in PF₃BH₃ should be shorter than that in PF₃ as a result of the diminution of the lone-pair repulsion by BH₃ coordination, which should cause an

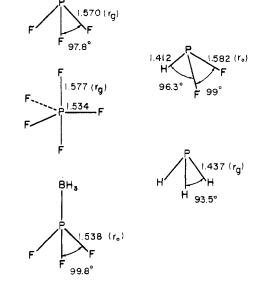


Figure 3.—Comparison of the structures of phosphorus-fluorine compounds. All bond lengths are in Å.

increase in the FPF angle at the same time. A similar shortening has been observed for the equatorial P-F bond in PF_5 , where the unshared pair in PF_3 is replaced by two axial P-F bonds. As for HPF_2 , substitution of a fluorine atom in PF_3 by hydrogen should increase the remaining P-F bonds, since the repulsion of the P-H bonding electron pair is larger than that of the P-F pair because of the lower electronegativity of hydrogen in comparison with that of fluorine. A similar relation holds for the P-H bond distances of PH₃³⁸ and HPF₂. Table III lists the bond angles in group V trihalides. which increase from fluorides to iodides and decrease from nitrogen to antimony compounds.³⁹⁻⁵¹ These systematic changes in bond angles have been accounted for by Gillespie¹¹⁻¹³ on the basis of his valence-shell electron-pair repulsion theory. In his table, however, the angles of 104 and 102° for PF₃ and AsF₃, respectively, were cited, and, hence, it seemed as if phosphorus and arsenic trifluorides had shown anomalously large angles. In order to explain this behavior, Gillespie invoked a subrule (postulate 5 in ref 11) assuming a

- (38) L. S. Bartell and R. C. Hirst, J. Chem. Phys., 31, 449 (1959).
- (39) M. Otake, C. Matsumura, and Y. Morino, J. Mol. Spectry., 28, 316 (1968).
- (40), F. B. Clippard and L. S. Bartell, "Symposium on Molecular Structure and Spectroscopy," Columbus, Ohio, Sent 1968, E9.
- and Spectroscopy," Columbus, Ohio, Sept 1968, E9.
 (41) S. Konaka and M. Kimura, "Symposium on Molecular Structure," Tokyo, Oct 1, 1968.
- (42) A. Bystrom and A. Westgren, Arkiv Kemi, Mineral. Geol., 17B, No. 2 (1953).
- (43) K. Hedberg and M: Iwasaki, J. Chem. Phys., 36, 589 (1962).
- (44) P. Kisliuk and C. H. Townes, *ibid.*, **18**, 1109 (1950).
- (45) S. Konaka and M. Kimura, presented at the 21st Annual Meeting of the Chemical Society of Japan, Osaka, March 1968.
- (46) P. W. Allen and L. E. Sutton, Acta Cryst., 3, 46 (1950).
- (47) D. M. Barnhart, University Microfilms, Ann Arbor, Mich., Order No. 64-13, 364; *Dissertation Abstr.*, 25, 3281 (1964).
- (48) A. H. Gregg, G. C. Hampson, G. I. Jenkins, P. L. F. Jones, and L. E. Sutton, Trans. Faraday Scc., 33, 852 (1937).
 - (49) O. Hassel and A. Sandbo, Z. Physik. Chem., B41, 75 (1938).
- (50) Y. Morino, T. Ukaji, and T. Ito, Bull. Chem. Soc. Japan, 39, 71 (1966).

(51) A. Almenningen and T. Bjorvatten, Acta Chem. Scand., 17, 2573 (1963).

⁽³⁴⁾ L. E. Sutton, D. G. Jenkin, A. D. Mitchell, and L. C. Cross, Ed., "Tables of Interatomic Distances and Configuration in Molecules and Ions," Special Publication No. 11, The Chemical Society, Builington House, London, 1958, p M55.

⁽³⁵⁾ R. L. Kuczkowski and D. R. Lide, J. Chem. Phys., 46, 357 (1967).

⁽³⁶⁾ R. L. Kuczkowski, J. Am. Chem. Soc., 90, 1705 (1968).

⁽³⁷⁾ R. J. Gillespie, Inorg. Chem., 5, 1634 (1966).

DOND ANGLES IN GROUP V TRIBALIDES"								
	N	~P		As	Sb			
Halide	Angle, deg Method	Angle, deg	\mathbf{Method}	Angle, deg Method	Angle, deg Method			
\mathbf{F}	$102.17 \pm 0.04 \text{ MW}^{39}$	$97.8 \pm 0.2 $	ED	$96.1 \pm 0.2 \text{ ED}^{40}$	(88) XD ⁴²			
				$95.8 \pm 0.7 \text{ ED}^{41}$				
Cl		100.27 ± 0.09	ED^{43}	$98.7 \pm 0.3 \text{ ED}^{45}$	99.5 ± 1.5 MW ⁶			
		100.1	MW^{44}	98.4 MW ⁴⁴				
Br		(101.5)	$\mathrm{ED}^{\mathtt{46}}$	$99.66 \pm 0.26 \text{ ED}^{47}$	(97) ED ^{48 49}			
I		(102)	$\mathrm{ED}^{_{49}}$	$100.2 \pm 0.4 \text{ ED}^{50}$	99.1 ± 2 ED ⁵¹			

TABLE III BOND ANGLES IN GROUP V TRIHALIDES⁴

*Abbreviations: ED, electron diffraction; MW, microwave spectroscopy; XD, X-ray diffraction (crystal). *Present study.

considerable contribution of double-bond character for the fluorides; according to his argument,¹² the above anomaly may be attributed to "the unshared pairs of fluorine having a strong tendency to delocalize into the incomplete shell of the central atom, thereby giving the bonds some double-bond character and, therefore, increasing the size of the bonding orbitals and hence the bond angle." From the present result for PF_3 , along with the recent results for AsF_3 by Bartell and Clippard⁴⁰ and by Konaka and Kimura,⁴¹ their bond angles fit in regular series, so that the rules governing the bond angles in group V trihalides can be simplified.

Contribution from the Department of Chemistry, University of California, Riverside, California 92502

The Characterization of Metal-Oxygen Bridge Systems¹

BY R. M. WING AND K. P. CALLAHAN

Received October 17, 1968

The vibrational spectra of various types of metal-oxygen bridge systems are assigned by normal-coordinate analysis and discussed in terms of geometry. The results of this analysis are shown to be a powerful tool for the characterization of metal-oxygen bridged complexes. The synthesis of a new dioxo-bridged molybdenum(V) complex is described and a structure is proposed on the basis of its infrared spectrum.

Introduction

In the course of our work on molybdenum(V) chemistry we have frequently been faced with the problem of distinguishing between the several types of oxygen-bridged dimers that occur in this system.²⁻⁴ Infrared spectral measurements were thought to be the solution to this problem.

However, the ir spectral characteristics of metal-tooxygen multiply bonded systems have been discussed in detail only for those compounds in which the oxo ligand is in a terminal position.⁵⁻⁷ An abbreviated analysis of monooxo bridged systems, both linear and bent, was discussed by Cotton and Wing,⁶ and Hewkin and Griffith⁸ have tabulated a considerable amount of

(1) Supported in part by the National Science Foundation under Grant GP-8055.

infrared and Raman data for compounds containing a single oxo bridge.

It is the purpose of this paper to present a general analysis of the mono- and dioxobridged systems and to illustrate how infrared spectra in the bridge metaloxygen region (ca. $850-200 \text{ cm}^{-1}$) can be used to predict structures. Of prime importance in a consideration of these bridge systems is the fact that the vibrational frequencies are strongly sensitive to the M-O-M bond angle. It is in fact this angular dependence which permits one to distinguish between mono- and dioxobridged systems.

Normal-Coordinate Analyses and Angular Dependence of Frequencies

The general monooxo-bridged metal dimer, treated for simplicity as a three-body system, is bent at an angle ϕ and exhibits two bridge vibrations. Such a system can be characterized by a two-constant potential field. The first constant pertains to the metal-oxygen

⁽²⁾ L. Sacconi and R. Cini, J. Am. Chem Soc., 76, 4239 (1954).

⁽³⁾ G. P. Haight, Jr., J. Inorg. Nucl. Chem., 24, 663 (1962).
(4) C. R. Hare, I. Bernal, and H. B. Gray, Inorg. Chem., 1, 831 (1962).

 ⁽⁴⁾ C. R. Hale, I. Bernal, and H. B. Glay, *Pholy*. Chem., 1, 651 (1902).
 (5) C. G. Barraclough, J. Lewis, and R. S. Nyholm, J. Chem. Soc., 3552

^{(195). (1959).}

⁽⁶⁾ F. A. Cotton and R. M. Wing, Inorg. Chem., 4, 867 (1965).

⁽⁷⁾ D. Grandjean and R. Weiss, Bull. Soc. Chim. France, 3058 (1967).

⁽⁸⁾ D. J. Hewkin and W. P. Griffith, J. Chem. Soc., A, 472 (1966).